- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
The Multiplicative Complexity and Algorithm of the Generalized Discrete Fourier Transform (GFT)
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-13-351,
author = {Y. H. Zeng},
title = {The Multiplicative Complexity and Algorithm of the Generalized Discrete Fourier Transform (GFT)},
journal = {Journal of Computational Mathematics},
year = {1995},
volume = {13},
number = {4},
pages = {351--356},
abstract = {
In this paper, we have proved that the lower bound of the number of real multiplications for computing a length $2^{t}$ real GFT(a,b) $(a=\pm 1/2,b=0\ or\ b=\pm 1/2,a=0)$ is $2^{t+1}-2t-2$ and that for computing a length $2^{t}$ real GFT(a,b)$(a=\pm 1/2, b=\pm 1/2)$ is $2^{t+1}-2$. Practical algorithms which meet the lower bounds of multiplications are given.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9277.html} }
TY - JOUR
T1 - The Multiplicative Complexity and Algorithm of the Generalized Discrete Fourier Transform (GFT)
AU - Y. H. Zeng
JO - Journal of Computational Mathematics
VL - 4
SP - 351
EP - 356
PY - 1995
DA - 1995/08
SN - 13
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9277.html
KW -
AB -
In this paper, we have proved that the lower bound of the number of real multiplications for computing a length $2^{t}$ real GFT(a,b) $(a=\pm 1/2,b=0\ or\ b=\pm 1/2,a=0)$ is $2^{t+1}-2t-2$ and that for computing a length $2^{t}$ real GFT(a,b)$(a=\pm 1/2, b=\pm 1/2)$ is $2^{t+1}-2$. Practical algorithms which meet the lower bounds of multiplications are given.
Y. H. Zeng. (1995). The Multiplicative Complexity and Algorithm of the Generalized Discrete Fourier Transform (GFT).
Journal of Computational Mathematics. 13 (4).
351-356.
doi:
Copy to clipboard