- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, first, modified upwind finite element schemes are presented for two-point value problem, and then a class of modified upwind Taylor finite element schemes are derived for one dimensional linear hyperbolic equation. The main point of the paper is how to consider the upwind property to construct base functions to make the schemes obtained be MmB (or TVD). Numerical experiments are given to show that the method is efficient to solve the discontinuous solutions.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9266.html} }In this paper, first, modified upwind finite element schemes are presented for two-point value problem, and then a class of modified upwind Taylor finite element schemes are derived for one dimensional linear hyperbolic equation. The main point of the paper is how to consider the upwind property to construct base functions to make the schemes obtained be MmB (or TVD). Numerical experiments are given to show that the method is efficient to solve the discontinuous solutions.