- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Determination and Correction of an Inconsistent System of Linear Inequalities
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-13-211,
author = {Y. Y. Nie and S. R. Xu},
title = {Determination and Correction of an Inconsistent System of Linear Inequalities},
journal = {Journal of Computational Mathematics},
year = {1995},
volume = {13},
number = {3},
pages = {211--217},
abstract = {
In this paper the problems to determine an inconsistent system of linear inequalities and to correct its right-hand side vector are solved by using the isometric plane method for linear programming. As an example, the suitable perturbation quantity of the perturbed inequalities of ill-conditioned linear equations is determined in the numerical experiments.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9263.html} }
TY - JOUR
T1 - Determination and Correction of an Inconsistent System of Linear Inequalities
AU - Y. Y. Nie & S. R. Xu
JO - Journal of Computational Mathematics
VL - 3
SP - 211
EP - 217
PY - 1995
DA - 1995/06
SN - 13
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9263.html
KW -
AB -
In this paper the problems to determine an inconsistent system of linear inequalities and to correct its right-hand side vector are solved by using the isometric plane method for linear programming. As an example, the suitable perturbation quantity of the perturbed inequalities of ill-conditioned linear equations is determined in the numerical experiments.
Y. Y. Nie and S. R. Xu. (1995). Determination and Correction of an Inconsistent System of Linear Inequalities.
Journal of Computational Mathematics. 13 (3).
211-217.
doi:
Copy to clipboard