- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We consider solving integral equations of the second kind defined on the half-line $[0,\infty)$ by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9233.html} }We consider solving integral equations of the second kind defined on the half-line $[0,\infty)$ by the preconditioned conjugate gradient method. Convergence is known to be slow due to the non-compactness of the associated integral operator. In this paper, we construct two different circulant integral operators to be used as preconditioners for the method to speed up its convergence rate. We prove that if the given integral operator is close to a convolution-type integral operator, then the preconditioned systems will have spectrum clustered around 1 and hence the preconditioned conjugate gradient method will converge superlinearly. Numerical examples are given to illustrate the fast convergence.