- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Convergence of the Point Vortex Methods for Euler Equation on Half Plane
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-14-213,
author = {P. W. Zhang},
title = {Convergence of the Point Vortex Methods for Euler Equation on Half Plane},
journal = {Journal of Computational Mathematics},
year = {1996},
volume = {14},
number = {3},
pages = {213--222},
abstract = {
In this paper, we study the point vortex method for 2-D Euler equation of incompressible flow on the half plane, and the explicit Euler's scheme is considered with the reflection method handling the boundary condition. Optimal error bounds for this fully discrete scheme are obtained.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9232.html} }
TY - JOUR
T1 - Convergence of the Point Vortex Methods for Euler Equation on Half Plane
AU - P. W. Zhang
JO - Journal of Computational Mathematics
VL - 3
SP - 213
EP - 222
PY - 1996
DA - 1996/06
SN - 14
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9232.html
KW -
AB -
In this paper, we study the point vortex method for 2-D Euler equation of incompressible flow on the half plane, and the explicit Euler's scheme is considered with the reflection method handling the boundary condition. Optimal error bounds for this fully discrete scheme are obtained.
P. W. Zhang. (1996). Convergence of the Point Vortex Methods for Euler Equation on Half Plane.
Journal of Computational Mathematics. 14 (3).
213-222.
doi:
Copy to clipboard