- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second part of the Hessian matrix of the objective function, and are updated in such a way that the resulting approximation to the whole Hessian matrix is the convex class of Broyden-like updating formulae. It is proved that the proposed updating formulae are invariant under linear transformation and that the class of factorized quasi-Newton methods are locally and superlinearly convergent. Numerical results are presented and show that the proposed methods are promising.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9226.html} }This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second part of the Hessian matrix of the objective function, and are updated in such a way that the resulting approximation to the whole Hessian matrix is the convex class of Broyden-like updating formulae. It is proved that the proposed updating formulae are invariant under linear transformation and that the class of factorized quasi-Newton methods are locally and superlinearly convergent. Numerical results are presented and show that the proposed methods are promising.