- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Unconstrained Methods for Generalized Nonlinear Complementarity and Variational Inequality Problems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-14-99,
author = {J. M. Peng},
title = {Unconstrained Methods for Generalized Nonlinear Complementarity and Variational Inequality Problems},
journal = {Journal of Computational Mathematics},
year = {1996},
volume = {14},
number = {2},
pages = {99--107},
abstract = {
In this paper, we construct unconstrained methods for the generalized nonlinear complementarity problem and variational inequalities. Properties of the correspondent unconstrained optimization problem are studied. We apply these methods to the subproblems in trust region method, and study their interrelationships. Numerical results are also presented.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9222.html} }
TY - JOUR
T1 - Unconstrained Methods for Generalized Nonlinear Complementarity and Variational Inequality Problems
AU - J. M. Peng
JO - Journal of Computational Mathematics
VL - 2
SP - 99
EP - 107
PY - 1996
DA - 1996/04
SN - 14
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9222.html
KW -
AB -
In this paper, we construct unconstrained methods for the generalized nonlinear complementarity problem and variational inequalities. Properties of the correspondent unconstrained optimization problem are studied. We apply these methods to the subproblems in trust region method, and study their interrelationships. Numerical results are also presented.
J. M. Peng. (1996). Unconstrained Methods for Generalized Nonlinear Complementarity and Variational Inequality Problems.
Journal of Computational Mathematics. 14 (2).
99-107.
doi:
Copy to clipboard