- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Recently, we have proposed an iterative projection and contraction (PC) method for a class of linear complementarity problems (LCP)$^{[4]}$. The method was showed to be globally convergent, but no statement could be made about the rate of convergence. In this paper, we develop a modified globally linearly convergent PC method for linear complementarity problems. Both the method and the convergence proofs are very simple. The method can also be used to solve some linear variational inequalities. Several computational experiments are presented to indicate that the method is surprising good for solving some known difficult problems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9219.html} }Recently, we have proposed an iterative projection and contraction (PC) method for a class of linear complementarity problems (LCP)$^{[4]}$. The method was showed to be globally convergent, but no statement could be made about the rate of convergence. In this paper, we develop a modified globally linearly convergent PC method for linear complementarity problems. Both the method and the convergence proofs are very simple. The method can also be used to solve some linear variational inequalities. Several computational experiments are presented to indicate that the method is surprising good for solving some known difficult problems.