- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A Legendre pseudospectral scheme is proposed for solving initial-boundary value problem of nonlinear Klein-Gordon equation. The numerical solution keeps the discrete conservation. Its stability and convergence are investigated. Numerical results are also presented, which show the high accuracy. The technique in the theoretical analysis provides a framework for Legendre pseudospectral approximation of nonlinear multi-dimensional problems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9193.html} }A Legendre pseudospectral scheme is proposed for solving initial-boundary value problem of nonlinear Klein-Gordon equation. The numerical solution keeps the discrete conservation. Its stability and convergence are investigated. Numerical results are also presented, which show the high accuracy. The technique in the theoretical analysis provides a framework for Legendre pseudospectral approximation of nonlinear multi-dimensional problems.