- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, a truncated hybrid method is proposed and developed for solving sparse large-scale nonlinear programming problems. In the hybrid method, a symmetric system of linear equations, instead of the usual quadratic programming subproblems, is solved at iterative process. In order to ensure the global convergence, a method of multiplier is inserted in iterative process. A truncated solution is determined for the system of linear equations and the unconstrained subproblems are solved by the limited memory BFGS algorithm such that the hybrid algorithm is suitable to the large-scale problems. The local convergence of the hybrid algorithm is proved and some numerical tests for medium-sized truss problem are given.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9188.html} }In this paper, a truncated hybrid method is proposed and developed for solving sparse large-scale nonlinear programming problems. In the hybrid method, a symmetric system of linear equations, instead of the usual quadratic programming subproblems, is solved at iterative process. In order to ensure the global convergence, a method of multiplier is inserted in iterative process. A truncated solution is determined for the system of linear equations and the unconstrained subproblems are solved by the limited memory BFGS algorithm such that the hybrid algorithm is suitable to the large-scale problems. The local convergence of the hybrid algorithm is proved and some numerical tests for medium-sized truss problem are given.