- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Nonlinear Jacobi iteration and nonlinear Gauss-Seidel iteration are proposed to solve the famous Numerov finite difference scheme for nonlinear two-points boundary value problem. The concept of supersolutions and subsolutions for nonlinear algebraic systems are introduced. By taking such solutions as initial values, the above two iterations provide monotone sequences, which tend to the solutions of Numerov scheme at geometric convergence rates. The global existence and uniqueness of solution of Numerov scheme are discussed also. The numerical results show the advantages of these two iterations.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9165.html} }Nonlinear Jacobi iteration and nonlinear Gauss-Seidel iteration are proposed to solve the famous Numerov finite difference scheme for nonlinear two-points boundary value problem. The concept of supersolutions and subsolutions for nonlinear algebraic systems are introduced. By taking such solutions as initial values, the above two iterations provide monotone sequences, which tend to the solutions of Numerov scheme at geometric convergence rates. The global existence and uniqueness of solution of Numerov scheme are discussed also. The numerical results show the advantages of these two iterations.