- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Splitting a Concave Domain to Convex Subdomains
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-16-327,
author = {Liu , Liping and Křížek , Michal},
title = {Splitting a Concave Domain to Convex Subdomains},
journal = {Journal of Computational Mathematics},
year = {1998},
volume = {16},
number = {4},
pages = {327--336},
abstract = {
We examine a steady-state heat radiation problem and its finite element approximation in $R^d$, $d=2, 3$. A nonlinear Stefan-Boltzmann boundary condition is considered. Another nonlinearity is due to the fact that the temperature is always greater or equal than $0 [K]$. We prove two convergence theorems for piecewise linear finite element solutions.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9163.html} }
TY - JOUR
T1 - Splitting a Concave Domain to Convex Subdomains
AU - Liu , Liping
AU - Křížek , Michal
JO - Journal of Computational Mathematics
VL - 4
SP - 327
EP - 336
PY - 1998
DA - 1998/08
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9163.html
KW - Nonlinear elliptic boundary value problems, heat radiation problem, finite elements, variational inequalities.
AB -
We examine a steady-state heat radiation problem and its finite element approximation in $R^d$, $d=2, 3$. A nonlinear Stefan-Boltzmann boundary condition is considered. Another nonlinearity is due to the fact that the temperature is always greater or equal than $0 [K]$. We prove two convergence theorems for piecewise linear finite element solutions.
Liu , Liping and Křížek , Michal. (1998). Splitting a Concave Domain to Convex Subdomains.
Journal of Computational Mathematics. 16 (4).
327-336.
doi:
Copy to clipboard