- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Asymptotic Error Expansion and Defect Correction for Sobolev and Viscoelasticity Type Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-16-51,
author = {Lin , QunZhang , Shuhua and Yan , Ningning},
title = {Asymptotic Error Expansion and Defect Correction for Sobolev and Viscoelasticity Type Equations},
journal = {Journal of Computational Mathematics},
year = {1998},
volume = {16},
number = {1},
pages = {51--62},
abstract = {
In this paper we study the higher accuracy methods $-$ the extrapolation and defect correction for the semidiscrete Galerkin approximations to the solutions of Sobolev and viscoelasticity type equations. The global extrapolation and the correction approximations of third order, rather than the pointwise extrapolation results are presented.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9141.html} }
TY - JOUR
T1 - Asymptotic Error Expansion and Defect Correction for Sobolev and Viscoelasticity Type Equations
AU - Lin , Qun
AU - Zhang , Shuhua
AU - Yan , Ningning
JO - Journal of Computational Mathematics
VL - 1
SP - 51
EP - 62
PY - 1998
DA - 1998/02
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9141.html
KW - Asymptotic error, semidiscrete Galerkin approximation, global extrapolation, higher accuracy.
AB -
In this paper we study the higher accuracy methods $-$ the extrapolation and defect correction for the semidiscrete Galerkin approximations to the solutions of Sobolev and viscoelasticity type equations. The global extrapolation and the correction approximations of third order, rather than the pointwise extrapolation results are presented.
Lin , QunZhang , Shuhua and Yan , Ningning. (1998). Asymptotic Error Expansion and Defect Correction for Sobolev and Viscoelasticity Type Equations.
Journal of Computational Mathematics. 16 (1).
51-62.
doi:
Copy to clipboard