- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A subspace search method for solving quadratic programming with box constraints is presented in this paper. The original problem is divided into many independent subproblem at an initial point, and a search direction is obtained by solving each of the subproblem, as well as a new iterative point is determined such that the value of objective function is decreasing. The convergence of the algorithm is proved under certain assumptions, and the numerical results are also given.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9104.html} }A subspace search method for solving quadratic programming with box constraints is presented in this paper. The original problem is divided into many independent subproblem at an initial point, and a search direction is obtained by solving each of the subproblem, as well as a new iterative point is determined such that the value of objective function is decreasing. The convergence of the algorithm is proved under certain assumptions, and the numerical results are also given.