- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
This article proposes a kind of nonlinear Galerkin methods with variable modes for the long-term integration of Kuramoto-Sivashinsky equation. It consists of finding an appropriate or best number of modes in the correction of the method. Convergence results and error estimates are derived for this method. Numerical examples show also the efficiency and advantage of our method over the usual nonlinear Galerkin method and the classical Galerkin method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9099.html} }This article proposes a kind of nonlinear Galerkin methods with variable modes for the long-term integration of Kuramoto-Sivashinsky equation. It consists of finding an appropriate or best number of modes in the correction of the method. Convergence results and error estimates are derived for this method. Numerical examples show also the efficiency and advantage of our method over the usual nonlinear Galerkin method and the classical Galerkin method.