- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we investigate the existence, uniqueness and regularity of the solution of semilinear parabolic equations with coefficients that are discontinuous across the interface, and some prior estimates are obtained. A net shape of the finite elements around the singular points was designed in [7] to solve the linear elliptic problems, by means of that net, we prove that the approximate solution has the same convergence rate as that without singularity.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9093.html} }In this paper we investigate the existence, uniqueness and regularity of the solution of semilinear parabolic equations with coefficients that are discontinuous across the interface, and some prior estimates are obtained. A net shape of the finite elements around the singular points was designed in [7] to solve the linear elliptic problems, by means of that net, we prove that the approximate solution has the same convergence rate as that without singularity.