- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Discontinuous Finite Element Method for Convection-Diffusion Equations
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-18-639,
author = {Abdellatif Agouzal},
title = {Discontinuous Finite Element Method for Convection-Diffusion Equations},
journal = {Journal of Computational Mathematics},
year = {2000},
volume = {18},
number = {6},
pages = {639--644},
abstract = {
A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9074.html} }
TY - JOUR
T1 - Discontinuous Finite Element Method for Convection-Diffusion Equations
AU - Abdellatif Agouzal
JO - Journal of Computational Mathematics
VL - 6
SP - 639
EP - 644
PY - 2000
DA - 2000/12
SN - 18
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9074.html
KW - Discontinuous finite element method, Convection-diffusion equations.
AB -
A discontinuous finite element method for convection-diffusion equations is proposed and analyzed. This scheme is designed to produce an approximate solution which is completely discontinuous. Optimal order of convergence is obtained for model problem. This is the same convergence rate known for the classical methods.
Abdellatif Agouzal. (2000). Discontinuous Finite Element Method for Convection-Diffusion Equations.
Journal of Computational Mathematics. 18 (6).
639-644.
doi:
Copy to clipboard