- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Semidiscretization in Space of Nonlinear Degenerate Parabolic Equations with Blow-up of the Solutions
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-18-571,
author = {Tetsuya Ishiwata and Masayoshi Tsutsumi},
title = {Semidiscretization in Space of Nonlinear Degenerate Parabolic Equations with Blow-up of the Solutions},
journal = {Journal of Computational Mathematics},
year = {2000},
volume = {18},
number = {6},
pages = {571--586},
abstract = {
Semidiscretization in space of nonlinear degenerate parabolic equations of nondivergent form is presented, under zero Dirichlet boundary condition. It is shown that semidiscrete solutions blow up in finite time. In particular, the asymptotic behavior of blowing-up solutions, is discussed precisely.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9068.html} }
TY - JOUR
T1 - Semidiscretization in Space of Nonlinear Degenerate Parabolic Equations with Blow-up of the Solutions
AU - Tetsuya Ishiwata & Masayoshi Tsutsumi
JO - Journal of Computational Mathematics
VL - 6
SP - 571
EP - 586
PY - 2000
DA - 2000/12
SN - 18
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9068.html
KW - Semi-discrete problem, Blow-up of solutions, Blow-up rate, Blow-up set, Limiting profile.
AB -
Semidiscretization in space of nonlinear degenerate parabolic equations of nondivergent form is presented, under zero Dirichlet boundary condition. It is shown that semidiscrete solutions blow up in finite time. In particular, the asymptotic behavior of blowing-up solutions, is discussed precisely.
Tetsuya Ishiwata and Masayoshi Tsutsumi. (2000). Semidiscretization in Space of Nonlinear Degenerate Parabolic Equations with Blow-up of the Solutions.
Journal of Computational Mathematics. 18 (6).
571-586.
doi:
Copy to clipboard