arrow
Volume 18, Issue 5
A Modified Algorithm of Finding an Element of Clarke Generalized Gradient for a Smooth Composition of Max-Type Functions

Yan Gao

J. Comp. Math., 18 (2000), pp. 513-520.

Published online: 2000-10

Export citation
  • Abstract

This paper refers to Clarke generalized gradient for a smooth composition of max-type functions of the form: $f(x)=g(x,\ {\rm max}_{j \in J_1} \ f_{1j}(x),\cdots, \ {\rm max}_{j \in J_m} \ f_{mj}(x))$, where $x\in R^n, \ J_i, \ i=1, ..., \ m$ are finite index sets, $g$ and $f_{ij}, \ j \in J_i, \ i=1,...,m$, are continuously differentiable on $R^{m+n}$ and $R^n$ respectively. In a previous paper, we proposed an algorithm of finding an element of Clarke generalized gradient for $f$, at a point. In that paper, finding an element of Clarke generalized gradient for $f$ , at a point, is implemented by determining the compatibilities of systems of linear inequalities many times. So its computational amount is very expensive. In this paper, we will modify the algorithm to reduce the times that the compatibilities of systems of linear inequalities have to be determined.  

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JCM-18-513, author = {Yan Gao}, title = {A Modified Algorithm of Finding an Element of Clarke Generalized Gradient for a Smooth Composition of Max-Type Functions}, journal = {Journal of Computational Mathematics}, year = {2000}, volume = {18}, number = {5}, pages = {513--520}, abstract = {

This paper refers to Clarke generalized gradient for a smooth composition of max-type functions of the form: $f(x)=g(x,\ {\rm max}_{j \in J_1} \ f_{1j}(x),\cdots, \ {\rm max}_{j \in J_m} \ f_{mj}(x))$, where $x\in R^n, \ J_i, \ i=1, ..., \ m$ are finite index sets, $g$ and $f_{ij}, \ j \in J_i, \ i=1,...,m$, are continuously differentiable on $R^{m+n}$ and $R^n$ respectively. In a previous paper, we proposed an algorithm of finding an element of Clarke generalized gradient for $f$, at a point. In that paper, finding an element of Clarke generalized gradient for $f$ , at a point, is implemented by determining the compatibilities of systems of linear inequalities many times. So its computational amount is very expensive. In this paper, we will modify the algorithm to reduce the times that the compatibilities of systems of linear inequalities have to be determined.  

}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9062.html} }
TY - JOUR T1 - A Modified Algorithm of Finding an Element of Clarke Generalized Gradient for a Smooth Composition of Max-Type Functions AU - Yan Gao JO - Journal of Computational Mathematics VL - 5 SP - 513 EP - 520 PY - 2000 DA - 2000/10 SN - 18 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/9062.html KW - Nonsmooth optimization, Clarke generalized gradient, Max-type function. AB -

This paper refers to Clarke generalized gradient for a smooth composition of max-type functions of the form: $f(x)=g(x,\ {\rm max}_{j \in J_1} \ f_{1j}(x),\cdots, \ {\rm max}_{j \in J_m} \ f_{mj}(x))$, where $x\in R^n, \ J_i, \ i=1, ..., \ m$ are finite index sets, $g$ and $f_{ij}, \ j \in J_i, \ i=1,...,m$, are continuously differentiable on $R^{m+n}$ and $R^n$ respectively. In a previous paper, we proposed an algorithm of finding an element of Clarke generalized gradient for $f$, at a point. In that paper, finding an element of Clarke generalized gradient for $f$ , at a point, is implemented by determining the compatibilities of systems of linear inequalities many times. So its computational amount is very expensive. In this paper, we will modify the algorithm to reduce the times that the compatibilities of systems of linear inequalities have to be determined.  

Yan Gao. (2000). A Modified Algorithm of Finding an Element of Clarke Generalized Gradient for a Smooth Composition of Max-Type Functions. Journal of Computational Mathematics. 18 (5). 513-520. doi:
Copy to clipboard
The citation has been copied to your clipboard