- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Finite Difference Scheme for the Generalized Nonlinear Schrödinger Equation with Variable Coefficients
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-18-123,
author = {Wei-Zhong Dai and Raja Nassar},
title = {A Finite Difference Scheme for the Generalized Nonlinear Schrödinger Equation with Variable Coefficients},
journal = {Journal of Computational Mathematics},
year = {2000},
volume = {18},
number = {2},
pages = {123--132},
abstract = {
A finite difference scheme for the generalized nonlinear Schrödinger equation with variable coefficients is developed. The scheme is shown to satisfy two conservation laws. Numerical results show that the scheme is accurate and efficient.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9028.html} }
TY - JOUR
T1 - A Finite Difference Scheme for the Generalized Nonlinear Schrödinger Equation with Variable Coefficients
AU - Wei-Zhong Dai & Raja Nassar
JO - Journal of Computational Mathematics
VL - 2
SP - 123
EP - 132
PY - 2000
DA - 2000/04
SN - 18
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9028.html
KW - Finite difference scheme, Schrödinger equation, Discrete energy method.
AB -
A finite difference scheme for the generalized nonlinear Schrödinger equation with variable coefficients is developed. The scheme is shown to satisfy two conservation laws. Numerical results show that the scheme is accurate and efficient.
Wei-Zhong Dai and Raja Nassar. (2000). A Finite Difference Scheme for the Generalized Nonlinear Schrödinger Equation with Variable Coefficients.
Journal of Computational Mathematics. 18 (2).
123-132.
doi:
Copy to clipboard