- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for problems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an $h$-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8994.html} }Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for problems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an $h$-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented.