- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The purpose of this paper is to adopt the quasi-interpolating operators in multivariate spline space $S^1_2(\Delta^{2*}_{mn})$ to solve two-dimensional Fredholm Integral Equations of second kind with the hypersingular kernels. The quasi-interpolating operators are put forward in ([7]). Based on the approximation properties of the operators, we obtain the uniform convergence of the approximate solution sequence on the Second Kind Fredholm intergral equation with the Cauchy singular kernel function.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8975.html} }The purpose of this paper is to adopt the quasi-interpolating operators in multivariate spline space $S^1_2(\Delta^{2*}_{mn})$ to solve two-dimensional Fredholm Integral Equations of second kind with the hypersingular kernels. The quasi-interpolating operators are put forward in ([7]). Based on the approximation properties of the operators, we obtain the uniform convergence of the approximate solution sequence on the Second Kind Fredholm intergral equation with the Cauchy singular kernel function.