- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Let A be a real square matrix and $V^TAV = G$ be an upper Hessenberg matrix with positive subdiagonal entries, where $V$ is an orthogonal matrix. Then the implicit $Q$-theorem states that once the first column of $V$ is given then $V$ and $G$ are uniquely determined. In this paper, three results are established. First, it holds a reverse order implicit $Q$-theorem: once the last column of $V$ is given, then $V$ and $G$ are uniquely determined too. Second, it is proved that for a Krylov subspace two formulations of the Arnoldi process are equivalent and in one to one correspondence. Finally, by the equivalence relation and the reverse order implicit $Q$-theorem, it is proved that for the Krylov subspace, if the last vector of vector sequence generated by the Arnoldi process is given, then the vector sequence and resulting Hessenberg matrix are uniquely determined.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8936.html} }Let A be a real square matrix and $V^TAV = G$ be an upper Hessenberg matrix with positive subdiagonal entries, where $V$ is an orthogonal matrix. Then the implicit $Q$-theorem states that once the first column of $V$ is given then $V$ and $G$ are uniquely determined. In this paper, three results are established. First, it holds a reverse order implicit $Q$-theorem: once the last column of $V$ is given, then $V$ and $G$ are uniquely determined too. Second, it is proved that for a Krylov subspace two formulations of the Arnoldi process are equivalent and in one to one correspondence. Finally, by the equivalence relation and the reverse order implicit $Q$-theorem, it is proved that for the Krylov subspace, if the last vector of vector sequence generated by the Arnoldi process is given, then the vector sequence and resulting Hessenberg matrix are uniquely determined.