- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The motion of surface waves under the effect of bottom is a very interesting and challenging phenomenon in the nature, we use boundary integral method to compute and analyze this problem. In the linear analysis, the linearized equations have bounded error increase under some compatible conditions. This contributes to the cancellation of instable Kelvin-Helmholtz terms. Under the effect of bottom, the existence of equations is hard to determine, but given some limitations it proves true. These limitations are that the swing of interfaces should be small enough, and the distance between surface and bottom should be large enough. In order to maintain the stability of computation, some compatible relationship must be satisfied like that of [5]. In the numerical examples, the simulation of standing waves and breaking waves are calculated. And in the case of shallow bottom, we found that the behavior of waves is rather singular.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8927.html} }The motion of surface waves under the effect of bottom is a very interesting and challenging phenomenon in the nature, we use boundary integral method to compute and analyze this problem. In the linear analysis, the linearized equations have bounded error increase under some compatible conditions. This contributes to the cancellation of instable Kelvin-Helmholtz terms. Under the effect of bottom, the existence of equations is hard to determine, but given some limitations it proves true. These limitations are that the swing of interfaces should be small enough, and the distance between surface and bottom should be large enough. In order to maintain the stability of computation, some compatible relationship must be satisfied like that of [5]. In the numerical examples, the simulation of standing waves and breaking waves are calculated. And in the case of shallow bottom, we found that the behavior of waves is rather singular.