- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Some superapproximation and ultra-approximation properties in function, gradient and two-order derivative approximations are shown for the interpolation operator of projection type on two-dimensional domain. Then, we consider the Ritz projection and Ritz-Volterra projection on finite element spaces, and by means of the superapproximation elementary estimates and Green function methods, derive the superconvergence and ultraconvergence error estimates for both projections, which are also the finite element approximation solutions of the elliptic problems and the Sobolev equations, respectively.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8917.html} }Some superapproximation and ultra-approximation properties in function, gradient and two-order derivative approximations are shown for the interpolation operator of projection type on two-dimensional domain. Then, we consider the Ritz projection and Ritz-Volterra projection on finite element spaces, and by means of the superapproximation elementary estimates and Green function methods, derive the superconvergence and ultraconvergence error estimates for both projections, which are also the finite element approximation solutions of the elliptic problems and the Sobolev equations, respectively.