- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
An interior trust-region-based algorithm for linearly constrained minimization problems is proposed and analyzed. This algorithm is similar to trust region algorithms for unconstrained minimization: a trust region subproblem on a subspace is solved in each iteration. We establish that the proposed algorithm has convergence properties analogous to those of the trust region algorithms for unconstrained minimization. Namely, every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and at least one limit point satisfies second order necessary optimality conditions. In addition, if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a neighborbood of that point, then the generated sequence converges globally to that point in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical properties of the algorithm in this paper. Implementation issues and adaptation to large-scale problems will be addressed in a future report.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8913.html} }An interior trust-region-based algorithm for linearly constrained minimization problems is proposed and analyzed. This algorithm is similar to trust region algorithms for unconstrained minimization: a trust region subproblem on a subspace is solved in each iteration. We establish that the proposed algorithm has convergence properties analogous to those of the trust region algorithms for unconstrained minimization. Namely, every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and at least one limit point satisfies second order necessary optimality conditions. In addition, if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a neighborbood of that point, then the generated sequence converges globally to that point in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical properties of the algorithm in this paper. Implementation issues and adaptation to large-scale problems will be addressed in a future report.