- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Multigrid methods are developed and analyzed for the generalized stationary Stokes equations which are discretized by various mixed finite element methods. In this paper, the multigrid algorithm, the criterion for prolongation operators and the convergence analysis are all established in an abstract and element-independent fashion. It is proven that the multigrid algorithm converges optimally if the prolongation operator satisfies the criterion. To utilize the abstract result, more than ten well-known mixed finite elements for the Stokes problems are discussed in detail and examples of prolongation operators are constructed explicitly. For nonconforming elements, it is shown that the usual local averaging technique for constructing prolongation operators can be replaced by a computationally cheaper alternative, random choice technique. Moreover, since the algorithm and analysis allows using of nonnested meshes, the abstract result also applies to low order mixed finite elements, which are usually stable only for some special mesh structures.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8905.html} }Multigrid methods are developed and analyzed for the generalized stationary Stokes equations which are discretized by various mixed finite element methods. In this paper, the multigrid algorithm, the criterion for prolongation operators and the convergence analysis are all established in an abstract and element-independent fashion. It is proven that the multigrid algorithm converges optimally if the prolongation operator satisfies the criterion. To utilize the abstract result, more than ten well-known mixed finite elements for the Stokes problems are discussed in detail and examples of prolongation operators are constructed explicitly. For nonconforming elements, it is shown that the usual local averaging technique for constructing prolongation operators can be replaced by a computationally cheaper alternative, random choice technique. Moreover, since the algorithm and analysis allows using of nonnested meshes, the abstract result also applies to low order mixed finite elements, which are usually stable only for some special mesh structures.