- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Multigrid for the Mortar Finite Element for Parabolic Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-21-411,
author = {Xu , Xue-Jun and Chen , Jin-Ru},
title = {Multigrid for the Mortar Finite Element for Parabolic Problem},
journal = {Journal of Computational Mathematics},
year = {2003},
volume = {21},
number = {4},
pages = {411--420},
abstract = {
In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the convergence rate is independent of the mesh size $L$ and the time step parameter $\tau$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8883.html} }
TY - JOUR
T1 - Multigrid for the Mortar Finite Element for Parabolic Problem
AU - Xu , Xue-Jun
AU - Chen , Jin-Ru
JO - Journal of Computational Mathematics
VL - 4
SP - 411
EP - 420
PY - 2003
DA - 2003/08
SN - 21
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8883.html
KW - Multigrid, Mortar element, Parabolic problem.
AB -
In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the convergence rate is independent of the mesh size $L$ and the time step parameter $\tau$.
Xu , Xue-Jun and Chen , Jin-Ru. (2003). Multigrid for the Mortar Finite Element for Parabolic Problem.
Journal of Computational Mathematics. 21 (4).
411-420.
doi:
Copy to clipboard