arrow
Volume 21, Issue 4
Multigrid for the Mortar Finite Element for Parabolic Problem

Xue-Jun Xu & Jin-Ru Chen

J. Comp. Math., 21 (2003), pp. 411-420.

Published online: 2003-08

Export citation
  • Abstract

In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the convergence rate is independent of the mesh size $L$ and the time step parameter $\tau$.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JCM-21-411, author = {Xu , Xue-Jun and Chen , Jin-Ru}, title = {Multigrid for the Mortar Finite Element for Parabolic Problem}, journal = {Journal of Computational Mathematics}, year = {2003}, volume = {21}, number = {4}, pages = {411--420}, abstract = {

In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the convergence rate is independent of the mesh size $L$ and the time step parameter $\tau$.

}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8883.html} }
TY - JOUR T1 - Multigrid for the Mortar Finite Element for Parabolic Problem AU - Xu , Xue-Jun AU - Chen , Jin-Ru JO - Journal of Computational Mathematics VL - 4 SP - 411 EP - 420 PY - 2003 DA - 2003/08 SN - 21 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/8883.html KW - Multigrid, Mortar element, Parabolic problem. AB -

In this paper, a mortar finite element method for parabolic problem is presented. Multigrid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the convergence rate is independent of the mesh size $L$ and the time step parameter $\tau$.

Xu , Xue-Jun and Chen , Jin-Ru. (2003). Multigrid for the Mortar Finite Element for Parabolic Problem. Journal of Computational Mathematics. 21 (4). 411-420. doi:
Copy to clipboard
The citation has been copied to your clipboard