- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
AD (Alternating direction) Galerkin schemes for $d$-dimensional nonlinear pseudo-hyperbolic equations are studied. By using patch approximation technique, AD procedure is realized, and calculation work is simplified. By using Galerkin approach, highly computational accuracy is kept. By using various priori estimate techniques for differential equations, difficulty coming from non-linearity is treated, and optimal $H^1$ and $L^2$ convergence properties are demonstrated. Moreover, although all the existed AD Galerkin schemes using patch approximation are limited to have only one order accuracy in time increment, yet the schemes formulated in this paper have second order accuracy in it. This implies an essential advancement in AD Galerkin analysis.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8875.html} }AD (Alternating direction) Galerkin schemes for $d$-dimensional nonlinear pseudo-hyperbolic equations are studied. By using patch approximation technique, AD procedure is realized, and calculation work is simplified. By using Galerkin approach, highly computational accuracy is kept. By using various priori estimate techniques for differential equations, difficulty coming from non-linearity is treated, and optimal $H^1$ and $L^2$ convergence properties are demonstrated. Moreover, although all the existed AD Galerkin schemes using patch approximation are limited to have only one order accuracy in time increment, yet the schemes formulated in this paper have second order accuracy in it. This implies an essential advancement in AD Galerkin analysis.