- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Reciprocal Polynomial Extrapolation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-22-1,
author = {Sergio Amat, Sonia Busquier and Vicente F. Candela },
title = {Reciprocal Polynomial Extrapolation},
journal = {Journal of Computational Mathematics},
year = {2004},
volume = {22},
number = {1},
pages = {1--10},
abstract = {
An alternative to the classical extrapolations is proposed. The stability and the accuracy are studied. The new extrapolation behaves better than the classical ones when there are problems of stability. This technique will be useful in those problems where the region of stability is very small and it forces to work with too fine scales.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8846.html} }
TY - JOUR
T1 - Reciprocal Polynomial Extrapolation
AU - Sergio Amat, Sonia Busquier & Vicente F. Candela
JO - Journal of Computational Mathematics
VL - 1
SP - 1
EP - 10
PY - 2004
DA - 2004/02
SN - 22
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8846.html
KW - Extrapolation, Stability, ODE's.
AB -
An alternative to the classical extrapolations is proposed. The stability and the accuracy are studied. The new extrapolation behaves better than the classical ones when there are problems of stability. This technique will be useful in those problems where the region of stability is very small and it forces to work with too fine scales.
Sergio Amat, Sonia Busquier and Vicente F. Candela . (2004). Reciprocal Polynomial Extrapolation.
Journal of Computational Mathematics. 22 (1).
1-10.
doi:
Copy to clipboard