- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The exact boundary condition on a spherical artificial boundary is derived for the three-dimensional exterior problem of linear elasticity in this paper. After this boundary condition is imposed on the artificial boundary, a reduced problem only defined in a bounded domain is obtained. A series of approximate problems with increasing accuracy can be derived if one truncates the series term in the variational formulation, which is equivalent to the reduced problem. An error estimate is presented to show how the error depends on the finite element discretization and the accuracy of the approximate problem. In the end, a numerical example is given to demonstrate the performance of the proposed method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8841.html} }The exact boundary condition on a spherical artificial boundary is derived for the three-dimensional exterior problem of linear elasticity in this paper. After this boundary condition is imposed on the artificial boundary, a reduced problem only defined in a bounded domain is obtained. A series of approximate problems with increasing accuracy can be derived if one truncates the series term in the variational formulation, which is equivalent to the reduced problem. An error estimate is presented to show how the error depends on the finite element discretization and the accuracy of the approximate problem. In the end, a numerical example is given to demonstrate the performance of the proposed method.