- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Least-squares mixed finite element methods are proposed and analyzed for the incompressible magnetohydrodynamic equations, where the two vorticities are additionally introduced as independent variables in order that the primal equations are transformed into the first-order systems. We show that there hold the coerciveness and the optimal error bound in appropriate norms for all variables under consideration, which can be approximated by all kinds of continuous element. Consequently, the Babuška-Brezzi condition (i.e. the inf-sup condition) and the indefiniteness are avoided which are essential features of the classical mixed methods.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8819.html} }Least-squares mixed finite element methods are proposed and analyzed for the incompressible magnetohydrodynamic equations, where the two vorticities are additionally introduced as independent variables in order that the primal equations are transformed into the first-order systems. We show that there hold the coerciveness and the optimal error bound in appropriate norms for all variables under consideration, which can be approximated by all kinds of continuous element. Consequently, the Babuška-Brezzi condition (i.e. the inf-sup condition) and the indefiniteness are avoided which are essential features of the classical mixed methods.