- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
There exists a strong connection between numerical methods for the integration of ordinary differential equations and optimization problems. In this paper, we try to discover further their links. And we transform unconstrained problems to the equivalent ordinary differential equations and construct the LRKOPT method to solve them by combining the second order singly diagonally implicit Runge-Kutta formulas and line search techniques. Moreover, we analyze the global convergence and the local convergence of the LRKOPT method. Promising numerical results are also reported.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8803.html} }There exists a strong connection between numerical methods for the integration of ordinary differential equations and optimization problems. In this paper, we try to discover further their links. And we transform unconstrained problems to the equivalent ordinary differential equations and construct the LRKOPT method to solve them by combining the second order singly diagonally implicit Runge-Kutta formulas and line search techniques. Moreover, we analyze the global convergence and the local convergence of the LRKOPT method. Promising numerical results are also reported.