- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a Sample Average Approximation (SAA) method for a class of Stochastic Mathematical Programs with Complementarity Constraints (SMPCC) recently considered by Birbil, Gürkan and Listes [3]. We study the statistical properties of obtained SAA estimators. In particular we show that under moderate conditions a sequence of weak stationary points of SAA programs converge to a weak stationary point of the true problem with probability approaching one at exponential rate as the sample size tends to infinity. To implement the SAA method more efficiently, we incorporate the method with some techniques such as Scholtes' regularization method and the well known smoothing NCP method. Some preliminary numerical results are reported.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8787.html} }In this paper, we propose a Sample Average Approximation (SAA) method for a class of Stochastic Mathematical Programs with Complementarity Constraints (SMPCC) recently considered by Birbil, Gürkan and Listes [3]. We study the statistical properties of obtained SAA estimators. In particular we show that under moderate conditions a sequence of weak stationary points of SAA programs converge to a weak stationary point of the true problem with probability approaching one at exponential rate as the sample size tends to infinity. To implement the SAA method more efficiently, we incorporate the method with some techniques such as Scholtes' regularization method and the well known smoothing NCP method. Some preliminary numerical results are reported.