- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
The monotone variational inequalities VI$(\Omega,F)$ have vast applications, including optimal controls and convex programming. In this paper we focus on the VI problems that have a particular splitting structure and in which the mapping $F$ does not have an explicit form, therefore only its function values can be employed in the numerical methods for solving such problems. We study a set of numerical methods that are easily implementable. Each iteration of the proposed methods consists of two procedures. The first (prediction) procedure utilizes alternating projections to produce a predictor. The second (correction) procedure generates the new iterate via some minor computations. Convergence of the proposed methods is proved under mild conditions. Preliminary numerical experiments for some traffic equilibrium problems illustrate the effectiveness of the proposed methods.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8784.html} }The monotone variational inequalities VI$(\Omega,F)$ have vast applications, including optimal controls and convex programming. In this paper we focus on the VI problems that have a particular splitting structure and in which the mapping $F$ does not have an explicit form, therefore only its function values can be employed in the numerical methods for solving such problems. We study a set of numerical methods that are easily implementable. Each iteration of the proposed methods consists of two procedures. The first (prediction) procedure utilizes alternating projections to produce a predictor. The second (correction) procedure generates the new iterate via some minor computations. Convergence of the proposed methods is proved under mild conditions. Preliminary numerical experiments for some traffic equilibrium problems illustrate the effectiveness of the proposed methods.