- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a feasible QP-free method for solving nonlinear inequality constrained optimization problems. A new working set is proposed to estimate the active set. Specially, to determine the working set, the new method makes use of the multiplier information from the previous iteration, eliminating the need to compute a multiplier function. At each iteration, two or three reduced symmetric systems of linear equations with a common coefficient matrix involving only constraints in the working set are solved, and when the iterate is sufficiently close to a KKT point, only two of them are involved. Moreover, the new algorithm is proved to be globally convergent to a KKT point under mild conditions. Without assuming the strict complementarity, the convergence rate is superlinear under a condition weaker than the strong second-order sufficiency condition. Numerical experiments illustrate the efficiency of the algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8777.html} }In this paper, we propose a feasible QP-free method for solving nonlinear inequality constrained optimization problems. A new working set is proposed to estimate the active set. Specially, to determine the working set, the new method makes use of the multiplier information from the previous iteration, eliminating the need to compute a multiplier function. At each iteration, two or three reduced symmetric systems of linear equations with a common coefficient matrix involving only constraints in the working set are solved, and when the iterate is sufficiently close to a KKT point, only two of them are involved. Moreover, the new algorithm is proved to be globally convergent to a KKT point under mild conditions. Without assuming the strict complementarity, the convergence rate is superlinear under a condition weaker than the strong second-order sufficiency condition. Numerical experiments illustrate the efficiency of the algorithm.