- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-Babuška-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit estimators can be computed efficiently and directly, which can be used as error indicators for adaptation. Unlike in the reference [10], we obtain the error estimators in $L^2(L^2)$ norm by using duality techniques instead of in $L^2(H^1)$ norm.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8763.html} }Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-Babuška-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit estimators can be computed efficiently and directly, which can be used as error indicators for adaptation. Unlike in the reference [10], we obtain the error estimators in $L^2(L^2)$ norm by using duality techniques instead of in $L^2(H^1)$ norm.