- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we provide a theoretical analysis of the partition of unity finite element method(PUFEM), which belongs to the family of meshfree methods. The usual error analysis only shows the order of error estimate to the same as the local approximations [12]. Using standard linear finite element base functions as partition of unity and polynomials as local approximation space, in 1-d case, we derive optimal order error estimates for PUFEM interpolants. Our analysis show that the error estimate is of one order higher than the local approximations. The interpolation error estimates yield optimal error estimates for PUFEM solutions of elliptic boundary value problems.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8758.html} }In this paper, we provide a theoretical analysis of the partition of unity finite element method(PUFEM), which belongs to the family of meshfree methods. The usual error analysis only shows the order of error estimate to the same as the local approximations [12]. Using standard linear finite element base functions as partition of unity and polynomials as local approximation space, in 1-d case, we derive optimal order error estimates for PUFEM interpolants. Our analysis show that the error estimate is of one order higher than the local approximations. The interpolation error estimates yield optimal error estimates for PUFEM solutions of elliptic boundary value problems.