- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, disturbed sparse linear equations over the 0-1 finite field are considered. Due to the special structure of the problem, the standard alternating coordinate method can be implemented in such a way to yield a fast and efficient algorithm. Our alternating coordinate algorithm makes use of the sparsity of the coefficient matrix and the current residuals of the equations. Some hybrid techniques such as random restarts and genetic crossovers are also applied to improve our algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8757.html} }In this paper, disturbed sparse linear equations over the 0-1 finite field are considered. Due to the special structure of the problem, the standard alternating coordinate method can be implemented in such a way to yield a fast and efficient algorithm. Our alternating coordinate algorithm makes use of the sparsity of the coefficient matrix and the current residuals of the equations. Some hybrid techniques such as random restarts and genetic crossovers are also applied to improve our algorithm.