- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we study natural boundary reduction for Laplace equation with Dirichlet or Neumann boundary condition in a three-dimensional unbounded domain, which is the outside domain of a prolate spheroid. We express the Poisson integral formula and natural integral operator in a series form explicitly. Thus the original problem is reduced to a boundary integral equation on a prolate spheroid. The variational formula for the reduced problem and its well-posedness are discussed. Boundary element approximation for the variational problem and its error estimates, which have relation to the mesh size and the terms after the series is truncated, are also presented. Two numerical examples are presented to demonstrate the effectiveness and error estimates of this method.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8745.html} }In this paper, we study natural boundary reduction for Laplace equation with Dirichlet or Neumann boundary condition in a three-dimensional unbounded domain, which is the outside domain of a prolate spheroid. We express the Poisson integral formula and natural integral operator in a series form explicitly. Thus the original problem is reduced to a boundary integral equation on a prolate spheroid. The variational formula for the reduced problem and its well-posedness are discussed. Boundary element approximation for the variational problem and its error estimates, which have relation to the mesh size and the terms after the series is truncated, are also presented. Two numerical examples are presented to demonstrate the effectiveness and error estimates of this method.