- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
The Effect of Memory Terms in Diffusion Phenomena
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-24-91,
author = {A. Araújo, J.A. Ferreira and P. Oliveira},
title = {The Effect of Memory Terms in Diffusion Phenomena},
journal = {Journal of Computational Mathematics},
year = {2006},
volume = {24},
number = {1},
pages = {91--102},
abstract = {
In this paper the effect of integral memory terms in the behavior of diffusion phenomena is studied. The energy functional associated with different models is analyzed and stability inequalities are established. Approximation methods for the computation of the solution of the integro-differential equations are constructed. Numerical results are included.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8736.html} }
TY - JOUR
T1 - The Effect of Memory Terms in Diffusion Phenomena
AU - A. Araújo, J.A. Ferreira & P. Oliveira
JO - Journal of Computational Mathematics
VL - 1
SP - 91
EP - 102
PY - 2006
DA - 2006/02
SN - 24
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8736.html
KW - Heat propagation, Integro-differential equation, Numerical approximation, Splitting method.
AB -
In this paper the effect of integral memory terms in the behavior of diffusion phenomena is studied. The energy functional associated with different models is analyzed and stability inequalities are established. Approximation methods for the computation of the solution of the integro-differential equations are constructed. Numerical results are included.
A. Araújo, J.A. Ferreira and P. Oliveira. (2006). The Effect of Memory Terms in Diffusion Phenomena.
Journal of Computational Mathematics. 24 (1).
91-102.
doi:
Copy to clipboard