arrow
Volume 24, Issue 1
Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example

Zhimin Zhang & Ahmed Naga

J. Comp. Math., 24 (2006), pp. 19-24.

Published online: 2006-02

Export citation
  • Abstract

A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

zzhang@math.wayne.edu (Zhimin Zhang)

  • BibTex
  • RIS
  • TXT
@Article{JCM-24-19, author = {Zhang , Zhimin and Naga , Ahmed}, title = {Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example}, journal = {Journal of Computational Mathematics}, year = {2006}, volume = {24}, number = {1}, pages = {19--24}, abstract = {

A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.

}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8730.html} }
TY - JOUR T1 - Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example AU - Zhang , Zhimin AU - Naga , Ahmed JO - Journal of Computational Mathematics VL - 1 SP - 19 EP - 24 PY - 2006 DA - 2006/02 SN - 24 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/jcm/8730.html KW - Finite element method, Superconvergence, Triangular mesh, Equilateral. AB -

A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.

Zhang , Zhimin and Naga , Ahmed. (2006). Natural Superconvergent Points of Equilateral Triangular Finite Elements — A Numerical Example. Journal of Computational Mathematics. 24 (1). 19-24. doi:
Copy to clipboard
The citation has been copied to your clipboard