- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Taking $h_m$ as the mesh width of a curved edge $\Gamma _m$ $(m=1,...,d$ ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy $O(h_0^3)$ and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power $h_i^3$ $(i=1,2,...,d)$ are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8729.html} }Taking $h_m$ as the mesh width of a curved edge $\Gamma _m$ $(m=1,...,d$ ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy $O(h_0^3)$ and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power $h_i^3$ $(i=1,2,...,d)$ are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained.