- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A fourth-order operator marching method for the Helmholtz equation in a waveguide is developed in this paper. It is derived from a new fourth-order exponential integrator for linear evolution equations. The method improves the second-order accuracy associated with the widely used step-wise coupled mode method where the waveguide is approximated by segments that are uniform in the propagation direction. The Helmholtz equation is solved using a one-way reformulation based on the Dirichlet-to-Neumann map. An alternative version closely related to the coupled mode method is also given. Numerical results clearly indicate that the method is more accurate than the coupled mode method while the required computing effort is nearly the same.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8725.html} }A fourth-order operator marching method for the Helmholtz equation in a waveguide is developed in this paper. It is derived from a new fourth-order exponential integrator for linear evolution equations. The method improves the second-order accuracy associated with the widely used step-wise coupled mode method where the waveguide is approximated by segments that are uniform in the propagation direction. The Helmholtz equation is solved using a one-way reformulation based on the Dirichlet-to-Neumann map. An alternative version closely related to the coupled mode method is also given. Numerical results clearly indicate that the method is more accurate than the coupled mode method while the required computing effort is nearly the same.