- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condition is of exponential type with periodically varying parameters. We construct an approximation by first homogenizing the problem, and then linearizing about the homogenized solution. This approximation is far more accurate than both previous approximations or direct linearization. We establish convergence estimates for both the two- and three-dimensional case and provide two-dimensional numerical experiments.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8720.html} }We study galvanic currents on a heterogeneous surface. In electrochemistry, the oxidation-reduction reaction producing the current is commonly modeled by a nonlinear elliptic boundary value problem. The boundary condition is of exponential type with periodically varying parameters. We construct an approximation by first homogenizing the problem, and then linearizing about the homogenized solution. This approximation is far more accurate than both previous approximations or direct linearization. We establish convergence estimates for both the two- and three-dimensional case and provide two-dimensional numerical experiments.