- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Anisotropic Polarization Tensors for Ellipses and Ellipsoids
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-25-157,
author = {Hyeonbae Kang and Kyoungsun Kim},
title = {Anisotropic Polarization Tensors for Ellipses and Ellipsoids},
journal = {Journal of Computational Mathematics},
year = {2007},
volume = {25},
number = {2},
pages = {157--168},
abstract = {
In this paper we present a systematic way of computing the polarization tensors, anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8682.html} }
TY - JOUR
T1 - Anisotropic Polarization Tensors for Ellipses and Ellipsoids
AU - Hyeonbae Kang & Kyoungsun Kim
JO - Journal of Computational Mathematics
VL - 2
SP - 157
EP - 168
PY - 2007
DA - 2007/04
SN - 25
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/8682.html
KW - Anisotropic polarization tensor, Integral equation, Ellipsoid.
AB -
In this paper we present a systematic way of computing the polarization tensors, anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.
Hyeonbae Kang and Kyoungsun Kim. (2007). Anisotropic Polarization Tensors for Ellipses and Ellipsoids.
Journal of Computational Mathematics. 25 (2).
157-168.
doi:
Copy to clipboard