- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, some V-cycle multigrid algorithms are presented for the coupling system arising from the discretization of the Dirichlet exterior problem by coupling the natural boundary element method and finite element method. The convergence of these multigrid algorithms is obtained even with only one smoothing on all levels. The rate of convergence is found uniformly bounded independent of the number of levels and the mesh sizes of all levels, which indicates that these multigrid algorithms are optimal. Some numerical results are also reported.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8669.html} }In this paper, some V-cycle multigrid algorithms are presented for the coupling system arising from the discretization of the Dirichlet exterior problem by coupling the natural boundary element method and finite element method. The convergence of these multigrid algorithms is obtained even with only one smoothing on all levels. The rate of convergence is found uniformly bounded independent of the number of levels and the mesh sizes of all levels, which indicates that these multigrid algorithms are optimal. Some numerical results are also reported.