- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Digital inpainting is a fundamental problem in image processing and many variational models for this problem have appeared recently in the literature. Among them are the very successfully Total Variation (TV) model [11] designed for local inpainting and its improved version for large scale inpainting: the Curvature-Driven Diffusion (CDD) model [10]. For the above two models, their associated Euler Lagrange equations are highly nonlinear partial differential equations. For the TV model there exists a relatively fast and easy to implement fixed point method, so adapting the multigrid method of [24] to here is immediate. For the CDD model however, so far only the well known but usually very slow explicit time marching method has been reported and we explain why the implementation of a fixed point method for the CDD model is not straightforward. Consequently, the multigrid method as in [Savage and Chen, Int. J. Comput. Math., 82 (2005), pp. 1001-1015] will not work here. This fact represents a strong limitation to the range of applications of this model since usually fast solutions are expected. In this paper, we introduce a modification designed to enable a fixed point method to work and to preserve the features of the original CDD model. As a result, a fast and efficient multigrid method is developed for the modified model. Numerical experiments are presented to show the very good performance of the fast algorithm.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8664.html} }Digital inpainting is a fundamental problem in image processing and many variational models for this problem have appeared recently in the literature. Among them are the very successfully Total Variation (TV) model [11] designed for local inpainting and its improved version for large scale inpainting: the Curvature-Driven Diffusion (CDD) model [10]. For the above two models, their associated Euler Lagrange equations are highly nonlinear partial differential equations. For the TV model there exists a relatively fast and easy to implement fixed point method, so adapting the multigrid method of [24] to here is immediate. For the CDD model however, so far only the well known but usually very slow explicit time marching method has been reported and we explain why the implementation of a fixed point method for the CDD model is not straightforward. Consequently, the multigrid method as in [Savage and Chen, Int. J. Comput. Math., 82 (2005), pp. 1001-1015] will not work here. This fact represents a strong limitation to the range of applications of this model since usually fast solutions are expected. In this paper, we introduce a modification designed to enable a fixed point method to work and to preserve the features of the original CDD model. As a result, a fast and efficient multigrid method is developed for the modified model. Numerical experiments are presented to show the very good performance of the fast algorithm.