- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper we propose an affine scaling interior algorithm via conjugate gradient path for solving nonlinear equality systems subject to bounds on variables. By employing the affine scaling conjugate gradient path search strategy, we obtain an iterative direction by solving the linearize model. By using the line search technique, we will find an acceptable trial step length along this direction which is strictly feasible and makes the objective function nonmonotonically decreasing. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the numerical results of the proposed algorithm indicate to be effective.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8643.html} }In this paper we propose an affine scaling interior algorithm via conjugate gradient path for solving nonlinear equality systems subject to bounds on variables. By employing the affine scaling conjugate gradient path search strategy, we obtain an iterative direction by solving the linearize model. By using the line search technique, we will find an acceptable trial step length along this direction which is strictly feasible and makes the objective function nonmonotonically decreasing. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. Furthermore, the numerical results of the proposed algorithm indicate to be effective.