- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad applications in practice. Most existing algorithms for this kind of problems are derived from the variable projection method proposed by Golub and Pereyra, which utilizes the separability under a separate framework. However, the methods based on variable projection strategy would be invalid if there exist some constraints to the variables, as the real problems always do, even if the constraint is simply the ball constraint. We present a new algorithm which is based on a special approximation to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the gradient. Our method maintains all the advantages of variable projection based methods, and moreover, it can be combined with trust region methods easily and can be applied to general constrained separable nonlinear problems. Convergence analysis of our method is presented and numerical results are also reported.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/8633.html} }Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad applications in practice. Most existing algorithms for this kind of problems are derived from the variable projection method proposed by Golub and Pereyra, which utilizes the separability under a separate framework. However, the methods based on variable projection strategy would be invalid if there exist some constraints to the variables, as the real problems always do, even if the constraint is simply the ball constraint. We present a new algorithm which is based on a special approximation to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the gradient. Our method maintains all the advantages of variable projection based methods, and moreover, it can be combined with trust region methods easily and can be applied to general constrained separable nonlinear problems. Convergence analysis of our method is presented and numerical results are also reported.